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Abstract

Jump diffusion processes have been used in modern

finance to capture discontinuous behavior in asset

pricing. Various jump diffusion models are consid-

ered in this chapter. Also, the applications of jump

diffusion processes on stocks, bonds, and interest

rate are discussed.
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43.1. Introduction

In contrast to basic insights into continuous-time

asset-pricing models that have been driven by sto-

chastic diffusion processes with continuous sample

paths, jump diffusion processes have been used in

finance to capture discontinuous behavior in asset

pricing. As described in Merton (1976), the validity

of Black–Scholes formula depends on whether the

stock price dynamics can be described by a con-

tinuous-time diffusion process whose sample path

is continuous with probability 1. Thus, if the stock

price dynamics cannot be represented by stochastic

process with a continuous sample path, the Black–

Scholes solution is not valid. In other words, as the

price processes feature big jumps, i.e. not continu-

ous, continuous-time models cannot explain why

the jumps occur, and hence not adequate. In add-

ition, Ahn and Thompson (1986) also examined

the effect of regulatory risks on the valuation of

public utilities and found that those ‘‘jump risks’’

were priced even though they were uncorrelated

with market factors. It shows that jump risks can-

not be ignored in the pricing of assets. Thus, a

‘‘jump’’ stochastic process defined in continuous

time, and also called as ‘‘jump diffusion model’’

was rapidly developed.

The jump diffusion process is based on Poisson

process, which can be used for modeling systematic

jumps caused by surprise effect. Supposewe observe

a stochastic process St, which satisfies the following

stochastic differential equation with jump:

dSt ¼ at dtþ st dWt þ dJt, t 	 0, (43:1)

where dWt is a standard Wiener process. The term

dJt represents possible unanticipated jumps, and

which is a Poisson process. As defined in Gourier-

oux and Jasiak (2001), a jump process (Jt,t 2 Rþ)
is an increasing process such that

(i). J0 ¼ 0,

(ii). P Jtþdt � Jt ¼ 1jJt½ � ¼ lt dtþ o(dt),

(iii). P Jtþdt � Jt ¼ 0jJt½ � ¼ 1� lt dtþ o(dt),

where o(dt) tends to 0 when t tends to 0, and lt,

called the intensity, is a function of the information

available at time t. Furthermore, since the term dJt
is part of the unpredictable innovation terms we

make E[DJt] ¼ 0, which has zero mean during a

finite interval h. Besides, as any predictable part of



the jumps may be can be included in the drift

component at, jump times tj, j ¼ 1, 2, . . . . vary

by some discrete and random amount. Without

loss of generality, we assume that there are k pos-

sible types of jumps, with size ai, i ¼ 1, 2, L, and

the jumps occur at rate lt that may depend on the

latest observed St. As soon as a jump occurs, the

jump type is selected randomly and independently.

The probability of a jump of size ai, occuring is

given by pi. Particularly, for the case of the stand-

ard Poisson process, all jumps have size 1. In short,

the path of a jump process is an increasing stepwise

function with jumps equal to 1 at random rate

D1, D2, . . . , Dt, . . . ,.

Related research on the earlier development of a

basic Poisson jump model in finance was by Press

(1967). His model can be motivated as the aggre-

gation of a number of price changes within a fixed-

time interval. In his paper, the Poisson distribution

governs the number of events that result in price

movement, and the average number of events in a

time interval is called intensity. In addition, he

assumes that all volatility dynamics is the result

of discrete jumps in stock returns and the size of

a jump is stochastic and normally distributed.

Consequently, some empirical applications found

that a normal Poisson jump model provides a

good statistical characterization of daily exchange

rate and stock returns. For instance, using Stand-

ard &Poor’s 500 futures options and assuming

an underlying jump diffusion, Bates (1991)

found systematic behavior in expected jumps be-

fore the 1987 stock market crash. In practice, by

observing different paths of asset prices with re-

spect to different assets, distinct jump diffusion

models were introduced into literature by many

researchers. Therefore, in this chapter, we will

survey various jump diffusion models in current

literature as well as estimation procedures for

these processes.

43.2. Mixed-Jump Processes

The total change in asset prices may be comprised

of two types of changes:

1. Normal vibrations caused by marginal infor-

mation events satisfying a local Markov pro-

perty and modeled by a standard geometric

Brownian motion with a constant variance

per unit time. It has a continuous sample path.

2. Abnormal vibrations caused by information

shocks satisfying an antipathetical jump pro-

cess defined in continuous time, and modeled

by a jump process, reflecting the nonmarginal

impact of the information.

Thus, there have been a variety of studies that

explain too many outliers for a simple, constant-

variance log-normal distribution of stock price ser-

ies. Among them, Merton (1976) and Tucker and

Pond (1988) provide a more thorough discussion

of mixed-jump processes. Mixed-jump processes

are formed by combining a continuous diffusion

process and a discrete-jump process and may cap-

ture local and nonlocal asset price dynamics.

Merton (1976) pioneered the use of jump pro-

cesses in continuous-time finance. He derived an

option pricing formula as the underlying stock

returns are generated by a mixture of both con-

tinuous and the jump processes. He posited stock

returns as

dS

S
¼ (a� lk)dtþ sdZ þ d q (43:1)

where S is the stock price, a the instantaneous

expected return on the stock, s2 the instantaneous

variance of the stock return conditional on no

arrivals of ‘‘abnormal’’ information, dZ the stand-

ardized Wiener process, q the Poisson process as-

sumed independent of dZ, l the intensity of the

Poisson process, k ¼ «(Y � 1), where Ỹ � 1 is the

random variable percentage change in stock price

if the Poisson event occurs; « is the expectation

operator over the random variable Y. Actually,

Equation (43.1) can be rewritten as

dS

S
¼ (a� lk)dtþ sdZ

if the Poisson does not occur

¼ (a� lk)dtþ sdZ þ (Y � 1),

if the Poisson occurs

(43:2)
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Therefore, the option return dynamics can be re-

written as

dW

W
¼ aw � lkwð Þdtþ swdZ þ dqw (43:3)

Most likely, aw is the instantaneous expected re-

turn on the option, s2
v is the instantaneous vari-

ance of the stock return conditional on no arrivals

of ‘‘abnormal’’ information, qw is an Poisson pro-

cess with parameter l assumed independent of dZ,

kw ¼ «(Yw � 1), (Yw � 1) is the random variable

percentage change in option price if the Poisson

event occurs, « is the expectation operator over the

random variable Yw. The Poisson event for the

option price occurs if and only if the Poisson

event for the stock price occurs. Further, define

the random variable, Xn, which has the same dis-

tribution as the product of n independently and

identically distributed random variables. Each of

n independently and identically distributed ran-

dom variables has the identical distribution as the

random variable Y described in Equation (43.1).

As a consequence, by the original Black–Scholes

option pricing formula for the no-jump case,

W (S, t; E, r, s2), we can get the option price

with jump component

F s, tð Þ ¼
X1
n¼1

e�lt(lt)n

n!
«n{W (SXne

�lkt,t;E,s2, r)}

 �

(43:4)

Generally speaking, W satisfies the boundary con-

ditions of partial differential equation (see Oksen-

dal, 2000), and can be rewritten as a twice

continuously differentiable function of the stock

price and time, W (t) ¼ F(S, t). Nevertheless,

Equation (43.4) still not only holds most of the

attractive features of the original Black–Scholes

formula such as being regardless of the investor

preferences or knowledge of the expected return

on the underlying stock, but also satisfies the

Sharpe–Linter Capital Asset Pricing model as

long as the jump component of a security’s return

is uncorrelated with the market. In other words,

the mixed-jump model of Merton uses the CAPM

to value options written on securities involving

jump processes.

Also, Tucker and Pond (1988) empirically inves-

tigated four candidate processes (the scaled-t distri-

bution, the general stable distribution, compound

normal distribution, and the mixed-jump model)

for characterizing daily exchange rate changes for

sixmajor trading currencies from the period 1980 to

1984. They found that the mixed-jump model

exhibited the best distributional fit for all six cur-

rencies tested. Akgiray andBooth (1988) also found

that the mixed-diffusion jump process was superior

to the stable laws or mixture of normals as a model

of exchange rate changes for the British pound,

French franc, and the West German mark relative

to the U.S. dollar. Thus, both theoretical and em-

pirical studies of exchange rate theories under un-

certainty should explicitly allow for the presence of

discontinuities in exchange rate processes. In add-

ition, the assumption of pure diffusion processes for

exchange rates could lead to misleading inferences

due to its crude approximation.

43.3. Bernoulli Jump Process

In the implementation of empirical works, Ball and

Torous (1983) provide statistical evidence with

the existence of log-normally distributed jumps in

a majority of the daily returns of a sample of

NYSE-listed common stocks. The expression of

their Poisson jump diffusion model is as Equation

(43.1), and jump size Y has posited distribution, ln

Y  N(m, d2).

Ball and Torous (1983) introduced the Bernoulli

jump process as an appropriate model for stock

price jumps. Denote Xi as the number of events

that occur in subinterval i and independent distri-

buted random variables. By stationary independent

increment assumption,

N ¼
Xn
i¼1

Xi,

whereN is the number of events that occur in a time

interval of length t. Besides, define h ¼ t=n for any
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arbitrary integer n and divide (0, t) into n equal

subintervals each of length h. Thus, Xi satisfies

Pr[Xi ¼ 0] ¼ 1� lhþO(h)

Pr[Xi ¼ 1] ¼ lhþO(h) for i ¼ 1, 2, . . . , n

Pr[Xi > 1] ¼ O(h)

For large n, Xi has approximately the Bernoulli

distribution with parameter lh ¼ lt=n. As a result,

N has the binomial distribution, approximately,

i.e.

Pr[N ¼ k] ffi n

k

� �
lt

n

� �k

1� lt

n

� �n�k

k ¼ 0, 1, 2, . . . , n:

Now, assume that t is very small, they can approxi-

mate N by the Bernoulli variate X defined by

P[X ¼ 0] ¼ 1� lt,

P[X ¼ 1] ¼ lt:

The advantage of the Bernoulli jump process is that

more satisfactory empirical analyses are available.

The maximum likelihood estimation can be prac-

tically implemented and the unbiased, consistent,

and efficient estimators that attain theCramer–Rao

lower bound for the corresponding parameters.

Moreover, the statistically most powerful test of

the null hypothesis l ¼ 0 can be implemented. Ob-

viously, a Bernoulli jump process models informa-

tion arrivals and stock price jumps. This shows that

the presence of a jump component in common stock

returns can be possessed well. As a consequence,

Vlaar and Palm (1993) combined the GARCH (1,1)

and Bernoulli jump distribution to account for

skewness and leptokurtosis for weekly rates of the

European Monetary System (EMS). Das (2002)

considered the concept of Bernoulli approximation

to test the impact of Federal Reserve actions by

Federal Funds’ rate as well. (See Section 43.9.2

and Section 43.5, respectively.)

43.4. Gauss–Hermite Jump Process

To ensure the efficiency properties in valuing com-

pound option, Omberg (1988) derived a family of

jump models by employing Gauss–Hermite quad-

rature.

Note that t ¼ 0 and t ¼ T are the current time

and expiration date of the option, respectively, and

Dt ¼ T=N. Consider a compound option that

can only be exercised at the N interval boundaries

tk ¼ T � kDt, k ¼ 0, . . . ,N. Let Ck(S) be the value

of the compound option at time tk, the current value

of the compound option is thenCN(S) ; the value of

an actual contingent claim with optimal exercise

possible at any time is lim N ! CN(S). The com-

pound option can be recursively valued by

Ckþ1(S) ¼ max
�
EVkþ 1, e

�rDtE


Ck(Sk;S)

�o
,

where EVkþ1 is the immediate exercise value at

time tkþ1. Since S(t) is an unrestricted log-normal

diffusion process from tk to tkþ1,

E[Ck] ¼
ð1
�1

f(z)Ck Sem
0Dtþ zs

ffiffiffiffiffiffi
(Dt)

p� �
dz, (43:5)

where z is an independent sample from a normal

distribution with mean zero and variance one, f(z)

is its density function, and m0 ¼ r� s2=2 for a risk-

neutral valuation. A jump process approximation

to the above with n jumps takes the form

E[Ck] ffi
Xn
j¼1

pjCk(Se
uj), pj � 0 for j ¼ 1, . . . , n,

Xn
j¼1

pj ¼ 1, uj ¼ m0Dtþ zjs
ffiffiffiffiffiffiffiffi
(Dt)

p
So, Omberg (1988) considers to use Gaussian in-

tegration to approximate an intergral of the

form as in Equation (43.5). For example, for the

intergral,

I ¼
ðb
a

w(x)f (x)dx,

we can approximate this equation by a weighted

average of the function f(x) at n points

{x1, . . . , xn}. Let { wi}and { xj}are selected to

maximize the degree of precision m�, which is a

integration rule, i.e. if the integration error is zero

for all polynomials f(x) of order m� or less. {Pj(x)}
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is the set of polynomials with respect to the weight-

ing function w(x),ðb
a

w(x)Pi(x)Pj(x)dx ¼ 0, for i 6¼ j,ðb
a

w(x)P2
j (x)dx ¼ gj 6¼ 0, for i ¼ j,

Thus, the optimal evaluation points {Xj}are the n

zeros of Pn(x) and the corresponding weights {wj}

are

wj ¼ �(anþ1, nþ1=an, n)gn
P

0
n(xj)Pnþ1(xj)

> 0:

The degree of precision is m� ¼ 2n� 1. If the

weighting function w(x) is symmetric with regard

to the midpoint of the interval [a, b], then { xj}and

{wj} are the Gaussian evaluation points { xj}

and weights {wj}, respectively. Particularly, the

above procedure is called Gauss–Hermite quadra-

ture to approximate the integration problem. What

is shown in Omberg (1988) is the application of

Gauss–Hermite quadrature to the valuation of a

compound option, which is a natural way to

generate jump processes of any order n that are

efficient in option valuation. Thus, the Gauss–Her-

mite jump process arises as an efficient solution to

the problem of replicating a contingent claim

over a finite period of time with a portfolio of

assets. With this result, he suggested the exten-

sion of these methods to option valuation prob-

lems with multiple state variables, such as the

valuation of bond options in which the state

variables are taken to be interest rates at various

terms.

43.5. Jumps in Interest Rates

Cox et al. (1985a) proposed an influential paper

that derived a general equilibrium asset pricing

model under the assumption of diffusion pro-

cesses, and analyzed the term structure of interest

rate by it. Ahn and Thompson (1988) applied Cox,

Ingersoll, and Ross’s methodology to their model,

which is driven by jump diffusion processes, and

investigated the effect of jump components of the

underlying processes on the term structure of inter-

est rates. They differ from the model of Cox et al.

(1985) when they consider the state variables as

jump diffusion processes. Therefore, they sug-

gested that jump risks may have important impli-

cations for interest rate, and cannot be ignored for

the pricing of assets. In other words, they found

that Merton’s multi-beta CAPM does not hold in

general due to the existence of jump component of

the underlying processes on the term structure of

interest rate. Also, Breeden’s single consumption

beta does not hold, because the discontinuous

movements of the investment opportunities cannot

be fully captured by a single consumption beta.

Moreover, in contrast with the work of Cox et al.

(1981) providing that the traditional expectations

theory is not consistent with the equilibrium

models, they found that traditional expectations

theory is not consistent with the equilibrium

models as the term structure of interest rate is

under the jump diffusion process, since the term

premium is affected by the jump risk premiums.

Das (2002) tested the impact of Federal Reserve

actions by examining the role of jump-enhanced

stochastic processes in modeling the Federal Funds

rate. This research illustrated that compared to the

stochastic processes of equities and foreign ex-

change rates, the analytics for interest rates are

more complicated. One source of analytical com-

plexity considered in modeling interest rates with

jumps is mean reversion. Allowing for mean rever-

sion included in jump diffusion processes, the pro-

cess for interest rates employed in that paper is as

follows

dr ¼ k(u� r)dtþ ydzþ Jdp(h), (43:6)

which shows interest rate has mean-reversing drift

and two random terms, a pure diffusion process

and a Poisson process with a random jump J. In

addition, the variance of the diffusion is y2, and a

Poisson process p represents the arrival of jumps

with arrival frequency parameter h, which is de-

fined as the number of jumps per year. Moreover,

denote J as jump size, which can be a constant or

680 ENCYCLOPEDIA OF FINANCE



with a probability distribution. The diffusion and

Poisson processes are independent of each other as

well as independent of J.

The estimation method used here is the Ber-

noulli approximation proposed in Ball and Torous

(1983). Assuming that there exists no jump or only

one jump in each time interval, approximate the

likelihood function for the Poisson–Gauss model

using a Bernoulli mixture of the normal distribu-

tions governing the diffusion and jump shocks.

In discrete time, Equation (43.6) can be ex-

pressed as follows:

Dr ¼ k(u� r)Dtþ yDzþ J(m, g2)Dp(h),

where y2 is the annualized variance of the Gaussian

shock, and Dz is a standard normal shock term.

J(m, g2) is the jump shock with normal distribu-

tion. Dp(q) is the discrete-time Poisson increment,

approximated by a Bernoulli distribution with par-

ameter q ¼ hDtþO(Dt), allowing the jump inten-

sity q to depend on various state variables

conditionally. The transition probabilities for inter-

est rates following a Poisson–Gaussian process are

written as (for s > t):

f


r(s)jr(t)� ¼ q exp

�(r(s)� r(t)� k(u� r(t))Dt� m)2

2(y2tDtþ g2)

 !
1ffiffi

(
p

2p(y2tDtþ g2))

þ (1� q) exp
�(r(s)� r(t)� k(u� r(t))Dt)2

2y2tDt

 !
1ffiffi

(
p

py2tDt)
,

where q ¼ hDtþO(Dt). This is an approximation

for the true Poisson–Gaussian density with a mix-

ture of normal distributions. As in Ball and Torous

(1983), by maximum-likelihood estimation, which

maximizes the following function L,

L ¼
YT
t¼1

f


r(tþ Dt)jr(t)�,

we can obtain estimates that are consistent, un-

biased, and efficient and attain the Cramer-Rao

lower bound. Thus, they obtain the evidence that

jumps are an essential component of interest rate

models. Especially, the addition of a jump process

diminishes the extent of nonlinearity although some

research finds that the drift term in the stochastic

process for interest rates appears to be nonlinear.

Johannes (2003) suggested the estimated infini-

tesimal conditional moments to examine the statis-

tical and economic role of jumps in continuous-time

interest rate models. Based on Johannes’s ap-

proach, Bandi and Nguyen (2003) provided a gen-

eral asymptotic theory for the full function estimates

of the infinitesimal moments of continuous-time

models with discontinuous sample paths of the

jump diffusion type. Their framework justifies con-

sistent nonparametric extraction of the parameters

and functions that drive the dynamic evolution of

the process of interest. (i.e. the potentially nonaffine

and level dependent intensity of the jump arrival

being an example). Particularly, Singleton (2001)

provided characteristic function approaches to

deal with the Affine jump diffusion models of inter-

est rate. In the next section, we will introduce affine

jump diffusion model.

43.6. Affine Jump Diffusion model

For development in dynamic asset pricing models,

a particular assumption is that the state vector X

follows an affine jump diffusion (AJD). An affine

jump model is a jump diffusion process. In general,

as defined in Duffie and Kan (1996), we suppose

the diffusion for a Markov process Xis ‘affine’ if

m(y) ¼ uþ ky

s(y)s(y)0 ¼ hþ
XN
j¼1

yjH
( j),

where m: D ! Rn and s: D ! Rn�n, u is N � 1, k

is N �N, h and H (j) are all N �N and symmetric.

The X’s may represent observed asset returns or

prices or unobserved state variables in a dynamic

pricing model, such as affine term structure

models. Thus, extending the concept of ‘affine’

to the case of affine jump diffusions, we can note
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that the properties for affine jump diffusions

are that the drift vector, ‘‘instantaneous’’ covar-

iance matrix, and jump intensities all have affine

dependence on the state vector. Vasicek (1977) and

Cox et al. (1985) proposed the Gaussian and

square root diffusion models which are among

the AJD models in term structure literature. Sup-

pose that X is a Markov process in some state

space D � Rn, the affine jump diffusion is

dXt ¼ m(Xt)dtþ s(Xt)dWt þ dZt,

where W is an standard Brownian motion

in Rn, m : D ! Rn, s : D ! Rn�n, and Z is a

pure jump process whose jumps have a fixed prob-

ability distribution y on and arriving intensity

{l(Xt): t 	 0}, for some l:D ! [0, 1).

Furthermore, in Duffie et al. (2000), they sup-

pose that X is Markov process whose transition

semi-group has an infinitesimal generator of levy

type defined at a bounded C2 function f : D ! R

with bounded first and second derives by

}f (x) ¼ fx(x)m(x)þ 1

2
tr


fxx(x)s(x)s(x)

T
�þ l(x):

It means that conditional on the path of X, the

jump times of Z are the jump times of a

Poisson process with time varying intensity

{l(Xs): 0 � s � t}, and that the size of the jump

of Z at a jump time T is independent of

{Xs : 0 � s � T}, and has the probability distri-

bution y. Consequently, they provide an analytical

treatment of a class of transforms, including

Laplace and Fourier transformations in the setting

of affine jump diffusion state process.

The first step to their method is to show that the

Fourier transform of Xt and of certain related

random variables are known in closed form.

Next, by inverting this transform, they show how

the distribution of Xt and the prices of options can

be recovered. Then, they fix an affine discount

rate function R:D ! R. Depending on coefficients

(K, H, L, r), the affine dependence of m, ssT, l, R

are determined, as shown in p.1350 of Duffie et al.

(2000). Moreover, for c 2 Cn, the set of n-tuples of

complex numbers, let u(c) ¼ Ð
Rn exp (c:z)dv(z).

Thus, the ‘‘jump transform’’ u determines the

jump size distribution. In other words, the ‘‘coeffi-

cients’’ (K, H, l, u) of X completely determine its

distribution. Their method suggests a real advan-

tage of choosing a jump distribution v with an

explicitly known or easily computed jump trans-

form u. They also applied their transform analysis

to the pricing of options. See Duffle et al. (2000).

Furthermore, Singleton (2001) developed several

estimation strategies for affine asset pricing models

based on the known functional form of the condi-

tional characteristic function (CCF) of discretely

sampled observations from an affine jump diffu-

sion model, such as LML-CCF (Limited-informa-

tion estimation), ML-CCF (Maximum likelihood

estimation), and GMM-CCF estimation, etc. As

shown in his paper, a method of moments estima-

tor based on the CCF is shown to approximate the

efficiency of maximum likelihood for affine diffu-

sion models.

43.7. Geometric Jump Diffusion Model

Using Geometric Jump Diffusion with the instant-

aneous conditional variance, Vt, following a mean

reverting square root process, Bates (1996) showed

that the exchange rate, S($=deutschemark(DM))

followed it:

dS=S ¼ (m� l�kk)dtþ
ffiffiffiffi
V

p
dZ þ kdq

dV ¼ (a� bV )dtþ sv

ffiffiffiffi
V

p
dZv

Cov(dZ, dZv) ¼ pdt

Pr (dq ¼ 1) ¼ ldt

ln (1þ k)  N ln (1þ �kk)� 1

2
d2, d2

� �
,

where m is the instantaneous expected rate of ap-

preciation of the foreign currency, l is the numbers

of jumps in a year, k is the random percentage

jump conditional on a jump occurring, and q is a

Poisson counter with intensity l.

The main idea of this model illustrated that

skewed distribution can arise by considering non-

zero average jumps. Similarly, it also discusses that

excess kurtosis can arise from a substantial jump
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component. In addition, this geometric jump

diffusion model can see a direct relationship be-

tween the magnitude of conditional skewness and

excess kurtosis and the length of the holding period

as well.

43.8. Autoregressive Jump Process Model

A theory of the distribution of stock returns was

derived by Bachelier (1900) and expanded using

the idea of Brownian motion by Osborne (1959).

However, the empirical works generally concluded

that the B-O model fits observed returns rather

poorly. For example, a casual examination of

transactions data shows that assumption of a con-

stant interval between transactions is not strictly

valid. On the other hand, transactions for a given

stock occur at random times throughout a day

which gives nonuniform time intervals Also, the

notion of independence between transaction re-

turns is suspect. Niederhoffer and Osborne (1966)

showed that the empirical tests of independence

using returns based on transaction data have gen-

erally found large and statistically significant nega-

tive correlation. Thus, it is reasonable to model

returns as a process with random time intervals

between transaction and serial correlation among

returns on individual trades. Accordingly, an auto-

regressive jump process that models common stock

returns through time was proposed by Oldfield et

al. (1977). This model consists of a diffusion pro-

cess, which is continuous with probability 1 and

jump processes, which are continuous with prob-

ability 1. The jump process is assumed to operate

such that a jump occurs at each actual transaction,

and allows the magnitudes of jumps to be auto-

correlated. In addition, the model relies on the

distribution of random time intervals between

transactions. They suppose the dollar return of a

common stock over a holding period of length s is

the result of a process, which is a mixture process

composed of a continuous and jump process,

dP

P
¼ adtþ bdW þ zdp, (43:7)

where P stands for share price, dW is the increment

of a Wiener process with zero mean and unit vari-

ance, z is the percent change in share price resulting

from a jump, dp is a jump process (when dp ¼ 1, a

jump occurs; when dp ¼ 0, no jump occurs) and

dp and dW are assumed to be independent. Jump

amplitude is independent of dp and dW, but jumps

may be serially correlated. s is the elapsed time

between observed price Ptþs and Pt. The number

of jumps during the interval s is N, and Z(i) are the

jump size where Z(0) ¼ 1 and Z(i) 	 0 for

i ¼ 1, . . . , N. And the solution for Equation

(43.7) is

P(tþ s) ¼ P(t) � Z(0) � Z(1) . . .Z(N) � exp
{( a� b2=2)sþ b

ffiffiffiffiffiffi
(s)

p
W}

(43:8)

Divide Equation (43.8) by P(t) and take natural

logarithms, then

ln [P(tþ s)=P(t)] ¼ (a� b2=2)s

þ b
ffiffiffiffiffiffi
(s)

p
W þ ]

XN
i¼1

logZ(i):
(43:9)

According to the Equation (43.9), we can see the

third term of Equation (43.9) is the jump process.

If N ¼ 0 then ln [P(tþ s)=P(s)]is normally distrib-

uted with mean (a� b2=2)s and variance b2s. If

the lnZ(i) are assumed to be identically distrib-

uted with mean m and finite variance s2, a general

form of joint density for lnZ(i) can be represented

by:

f ( lnZ(1), � � � , lnZ(N)) ¼
ð1
�1

f ( lnZ(1), � � � ,
lnZ(N),W )dW ,

with :

E[ln Z(i)] ¼ m, for i ¼ 1, � � � , N,

Var[ln Z(i)] ¼ s2, for i ¼ 1, � � � , N,

Cov[ln Z(i), lnZ(i � j)] ¼ rjs
2, for j 	 0:

where rj is the correlation between lnZ(i) and

lnZ(i � j). The index i represents the jump number

while the index j denotes the number of lags
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between jumps. The startling feature of this general

joint density is the autocorrelation among jumps.

Hence, some major conclusions are drawn from

the data analysis: (1).

A geometric Brownian motion process or a sub-

ordinated process does not alone describe the sam-

ple data very well. (2). Stock returns seem to follow

an autoregressive jump process based on the sam-

ple means and variances of transaction returns. (3).

In contrast to the previous empirical work which is

not sufficiently detailed to determine the probabil-

ity law for transaction returns, the probability

density for the time intervals between jumps is

gamma.

43.9. Jump Diffusion Models with Conditional

Heteroscedasticity

43.9.1. Conditional Jump Dynamics

The basic jump model has been extended in a

number of directions. A tractable alternative is to

combine jumps with an ARCH=GARCH model in

discrete time. It seems likely that the jump prob-

ability will change over time. Ho et al. (1996)

formulate a continuous-time asset pricing model

based on the work of Chamnerlain (1988), but

include jumps. Their work strongly suggested that

both jump components and heteroscedastic

Brownian motions are needed to model the asset

returns. As the jump components are omitted, the

estimated rate of convergence of volatility to its

unconditional mean is significantly biased. More-

over, Chan and Maheu (2002) developed a new

conditional jump model to study jump dynamics

in stock market returns. They present a discrete-

time jump model with time varying conditional

jump intensity and jump size distribution. Besides,

they combine the jump specification with a

GARCH parameterization of volatility. Consider

the following jump model for stock returns:

Rt ¼ mþ
Xt
i¼1

fRt�i þ
ffiffiffiffi
ht

p
zt þ

Xnt
k¼1

Yt,k,

zt  NID(0,1), Yt,k  N(ut, d
2):

(43:10)

Define the information set at time t to be the

history of returns, Ft ¼ {Rt, � � � ,R1}The condi-

tional jump size Yt,k, given Ft�1, is presumed to be

independent and normally distributed with mean

ut and variance d2. Denote nt as the discrete count-

ing process governing the number of jumps that

arrive between t� 1 and t, which is distributed as a

Poisson random variable with the parameter

lt > 0 and density

P(nt ¼ jjFt�1) ¼ exp (� lt)l
j
t

j!
, j ¼ 0, 1, 2, � � � :

(43:11)

The mean and variance for the Poisson random

variable are both lt, which is often called the

jump intensity. The jump intensity is allowed

time-varying. ht is measurable with respect to the

information set Ft�1 and follows a GARCH(p,q)

process,

ht ¼ wþ
Xq
i¼1

ai«
2
t�i þ

Xp
i¼1

biht�i,

where «t ¼ Rt � m�Pp
i¼1 fiRt�i. «t contains the

expected jump component and it affects future

volatility through the GARCH variance factor.

Moreover, based on a parsimonious ARMA struc-

ture, let lt be endogenous. Denote the following

ARJI(r,s) model:

lt ¼ l0 þ
Xr
i¼1

rilt�i þ
Xs
i¼1

gijt�i

lt ¼ E[ntjFt�1] is the conditional expectation of

the counting process. jt�i represents the innovation

to lt�i. The shock jump intensity residual is

jt�i ¼ E[nt�ijFt�i]� lt�i

¼
X1
j¼0

jP(nt�i ¼ jjft�i)� lt�i:
(43:12)

The first term of Equation (43.12) is average num-

ber of jumps at time t� i based on time t� i

information. Therefore, xit�i represents the unpre-

dictable component about the conditional mean

of the counting process nt�i. Moreover, having
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observed Rt, let f (Rtjnt ¼ j, Ft�1) denote the con-

ditional density of returns given that j jumps occur

and the information set Ft�1, we can get the ex-

post probability of the occurrence of j jumps at

time t, with the filter defined as

P(nt ¼ jjFt) ¼ f (Rtjnt ¼ j, Ft�1)P(nt ¼ jjFt�1)

P(RtjFt�1)
,

j ¼ 0, 1, 2, � � � ,
(43:13)

where, the definition of P(nt ¼ jjFt�1) is the same

as Equation (43.11). The filter in Equation (43.13)

is an important component of their model of

time varying jump dynamics. Thus, the conditional

density of return is

P(RtjFt�1) ¼
X1
j¼0

f (Rtjnt ¼ j, Ft�1)P(nt ¼ jjFt�1):

(43:14)

Equation (43.14) shows that this model is nothing

more than a discrete mixture of distribution where

the mixing is driven by a time varying Poisson

distribution. Therefore, from the assumption of

Equation (43.10), the distribution of returns con-

ditional on the most recent information set and j

jumps is normally distributed as

f (Rtjnt ¼ j, Ft�1) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(ht þ jd2t )

q � exp

� (Rt � m�Pl
i¼1 fiRt�i � ut j)

2

2(ht þ jd2t )

 !
:

Equation (43.13) includes an infinite sum over the

possible number of jumps nt. However, practically,

they consider truncating the maximum number of

jumps to a large value t, and then they set the

probability of t or more jumps to 0. Hence, the

first way to choose t is to check Equation (43.11)

to be equal to 0 for j 	 t. The second check on the

choice of t is to investigate t > t to make sure that

the parameter estimate does not change.

The ARJI model illustrates that conditional

jump intensity is time varying. Suppose that we

observe jt > 0 for several periods. This suggests

that the jump intensity is temporarily trending

away from its unconditional mean. On the other

hand, this model effectively captures systematic

changes in jump risk in the market. In addition,

they find significant time variation in the condi-

tional jump intensity and the jump size distribution

in their application for daily stock market returns.

Accordingly, the ARJI model can capture system-

atic changes, and also forecast increases (de-

creases) in jump risk into the future.

43.9.2. ARCH=GARCH Jump Diffusion Model

As described in Drost et al. (1998), there exists

a major drawback of Merton’s (1976) model

which implies that returns are independent and

identically distributed at all frequencies that con-

flict with the overwhelming evidence of conditional

heteroscedasticity in returns at high frequencies,

because all deviations from log normality of ob-

served stock returns at any frequency can be attrib-

uted to the jumps in his model. Thus, several papers

consider the size of jumps within the models that

also involve the conditional heteroscedasticity.

Jorion (1988) considered a tractable specifica-

tion combining both ARCH and jump processes

for foreign exchange market:

ln (Pt=Pt�1)jt� 1 ¼ mþ
ffiffiffiffiffiffiffi
(bt)

p
zþ

Xnt
i¼1

ln (Yt),

bt ¼ Et�1(s
2
t ) ¼ a0 þ a1(xt�1 � m)2

in which a1 is the autoregressive parameter induc-

ing heteroskedasticity and the distribution of xt is

conditional on information at t� 1 and define xt
as the logarithm of price relative ln (Pt=Pt�1).

A jump size Y is assumed independently log nor-

mally distributed, lnY  N(u, d2), nt is the actual

number of jumps during the interval. z is a stand-

ard normal deviate. Consequently, his results

reveal that exchange rate exhibit systematic discon-

tinuities even after allowing for conditional hetero-

skedasticity in the diffusion process. In brief, in

his work, the maximum likelihood estimation of

a mixed-jump diffusion process indicates that
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ignoring the jump component in exchange rates

can lead to serious mispricing errors for currency

options. The same findings also can be found in

Nieuwland et al. (1991) who allow for the model

with conditional heteroscedasticity and jumps in

exchangerate market. Also, an application of a

GARCH jump mixture model has been given by

Vlaar and Palm (1993). They point out that the

GARCH specification cum normal innovation

cannot fully explain the leptokurtic behavior for

high-frequency financial data. Both the GARCH

specification and the jump process can explain the

leptokurtic behavior. Hence, they permit autocor-

relation in the mean higher-order GARCH effect

and Bernoulli jumps.

A weak GARCH model can be defined as a

symmetric discrete-time process {y(h)t, t 2 h �AA}

with finite fourth moment and with parameter

zh ¼ (fh,ah,bh,kh), if there exists a covariance-

stationary process {s(h)t, t2ha}with

s2
(h)tþh ¼ fh þ ahy

2
(h)t þ bhs

2
(h)t, t 2 h �AA

and we denote kh ¼
Ey4(h)t

(Ey2(h)t)
2
as the kurtosis of the

process.

Roughly speaking, the class of continuous-time

GARCH models can be divided into two groups.

One is the GARCH diffusion in which the sample

paths are smooth and the other, where the sample

paths are erratic. Drost and Werker (1996) devel-

oped several properties of discrete-time data that

are generated by underlying continuous-time pro-

cesses that accommodate both conditional hetero-

scedasticity and jumps. Their model is as follows.

Let {Yt, t 	 0}be the GARCH jump diffusion

with parameter vector zh ¼ (fh,ah,bh,kh) and

suppose ah0 for some h0 > 0. Then, there exists

v 2 (0, 1), u 2 (0, 1), f 2 (0, 1), y 2 (0, 1)

and ch and kh are given by

ch ¼
4{exp ( � hu)� 1þ hu}þ 2hu 1þ y þ 2hu

yf(2þ f)

 �
1� exp (� 2hu)

,

kh ¼ 3þ y

hu
þ 3yf(2þ f)

exp (� hu)� 1þ hu

(hu)2
,

such that zh (with bhj j < 1) is determined by

ch ¼ hv{1 � exp (� hu)},

ah ¼ exp (� hu)� bh,
bh

1þ b2
h

¼ ch exp (� hu)� 1

ch{1 þ exp (� 2hu)}� 2
,

where u is the time unit and scale is denoted by v.

f and y are slope parameters and f will denote

slopes in the (ah : bh) plane, while v determines the

slope of the kurtosis at very high frequencies.

Drost et al. (1998) employed the results of Drost

and Werker (1996), which stated that for GARCH

diffusion at an arbitrary frequency h, the five dis-

crete-time GARCH parameters can be written in

terms of only four continuous-time parameters, i.e

an over identifying restriction in GARCH diffu-

sion, for proposing a test for the presence of jumps

with conditional heteroscedasticity, which is based

on the following Theorem 1.

Theorem 1. Let {Yt: t 	 0}be a continuous-

time GARCH diffusion. Then u > 0 and l: 2 (0,1)

is defined by

u ¼ � ln (aþ b)

l ¼ 2 ln2 (aþ b)
{1 � (aþ b)2}(1 � b)2

a� ab(aþ b)

(

þ 6 ln (aþ b)þ 2 ln2 (aþ b)þ 4(1� a� b)

)

k ¼ 3þ 6
l

1� l

exp (� u)� 1þ u

u2

Thus, we set up the null and alternative hypo-

theses:

H0: {Yt: t 	 0}is a GARCH diffusion model

and H1: {Yt: t 	 0}is a GARCH jump diffusion

model.

From Theorem 1, by simple calculation, we

yield the relation between functions K and k:

K(a,b,k) ¼ k� k(a,b) ¼ 0

for GARCH diffusion. Furthermore, in Drost and

Werker (1996), they showed that K(a, b, k) will

be strictly larger than 0 for any GARCH jump

diffusion model. As a result, H0 is equivalent

to K(a, b, k) ¼ 0 and H1 is equivalent to
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K(a, b, k) > 0. In other words, this test can be

viewed as the kurtosis test for presence of jumps

with conditional heteroscedasticity. As well, it

indicates the presence of jumps in dollar exchange

rate.

43.10. Other Jump Diffusion models

As shown in Chacko and Viceira (2003), the jump

diffusion process for stock price dynamics with

asymmetric upward and downward jumps is

dSt

St

¼ mdtþ sdZ þ [exp ( Ju)� 1]d Nu(lu)

þ [exp ( � Jd)� 1]d Nd(ld):

[exp ( Ju)� 1]d Nu(lu) and [exp ( � Jd)� 1]d Nd(ld)

represent a positive jump and a downward jump,

respectively. Ju, Jd > 0 are stochastic jump magni-

tudes, which implies that the stock prices are non-

negative, ld , lu > 0 are constant, and also

determine jump frequencies. Furthermore, the

densities of jump magnitudes,

f (Ju) ¼ 1

hu

exp � Ju

hu

� �
and

and

f (Jd) ¼ 1

hd

exp � Jd

hd

� �
are drawn from exponential distributions. Note

that m and :s are constants.

To estimate this process, they provide a simple,

consistent procedure – spectral GMM by deriving

the conditional characteristic function of that

process.
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